High-throughput gene overexpression and knockdown in primary neurons by plasmid and siRNA electroporation

William Buchser, Yan Shi, Jose Pardinas, John Bixby, Vance Lemmon

Miami Project to Cure Paralysis

Introduction

To elucidate the contributions of multiple molecular effectors on a cellular phenotype, it has proven valuable to determine the impact of gene expression perturbations. We have developed high-throughput assays to either "overexpress" or "knockdown" gene targets in central nervous system neurons.

- Introduction of mammalian-expression vectors has been validated using eGFP in 96-well plate electroporations.
- Protein expression levels were reduced using siRNA oligonucleotides from various suppliers.
- Electroporations of L1CAM siRNAs were effective at knocking down their protein target. Protein levels were detected using immunofluorescence.
- The effects of these treatments on protein levels and axon outgrowth were scored via 96-well plate fluorescent microscopy using automated imaging with a neuron identification algorithm.
- Neurite and branches of identified neurons were measured and analyzed.
- We will expand our target set to include candidate axon growth-promoting genes. This will further our understanding of the underlying mechanisms in axonal regeneration and, in particular, of spinal cord regeneration after injury.

High Content Overexpression

Overview of 1 Experiment

1 96 Well Plate: 1 Mouse

4 Million Neurons

30+ Different Transfections

3 Replicates/Condition

20% Transfection Efficiency

50% Viability

Example Layout:

Fix & Stain

A Qiagen BioRobot 3000 performs

fixation and immunohistochemistry.

7 : Number of Cells % Only GFP % Only L1 % CoExpress 5µg 2µg 5µg L1 added 2µg 43% : If Green, chance is CoExpressing

Co-Transfection & Co-Expression

Optimization of two-gene transfections

Black Arrows: Neurons Co-Expressing L1& GFP

White Arrow: A neuron expressing L1 alone

siRNA Knockdown

Using Electroporation:

L1cam

GFP

Tubulin

~ 10% of neurons exhibit significantly reduced protein expression 48 hours after transfection (48 hours is used so that neurites are short enough to trace reliably)

High Content Screen

Imaging A Cellomics KineticScan Reader automatically images 5 fields from each well.

Automated Tracing

Cellomics software automatically identifies neurons and traces neurites. Both "cellbased" and "well-based" data are reported.

Conclusions

- 96 well electroporation can be used to express cDNAs in cerebellar granule cells for studies on neurite extension.
- 2. Co-transfection with eGFP allows identification of transfected neurons
- 3. 96 well electroporation can be used with siRNAs to knockdown protein expression in cerebellar granule cells but protein half-lives can influence the effectiveness of this approach in short-term (2 DIV) assays.